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ABSTRACT
We investigate the problem of automatic tuning of a decon-
volution algorithm for three-dimensional (3D) fluorescence
microscopy; specifically, the selection of the regularization
parameter λ. For this, we consider a realistic noise model for
data obtained from a CCD detector: Poisson photon-counting
noise plus Gaussian read-out noise. Based on this model, we
develop a new risk measure which unbiasedly estimates the
original mean-squared-error of the deconvolved signal esti-
mate. We then show how to use this risk estimate to opti-
mize the regularization parameter for Tikhonov-type decon-
volution algorithms. We present experimental results on sim-
ulated data and numerically demonstrate the validity of the
proposed risk measure. We also present results for real 3D
microscopy data.
Index Terms— 3D fluorescence microscopy, Deconvolu-

tion, Unbiased risk estimate (URE), CCD Noise.

1. INTRODUCTION
Deconvolution is widely used to enhance three-dimensional
(3D) fluorescence microscopy images, both to facilitate their
visual inspection and to improve the results of subsequent
computer-assisted analysis steps [1]. Although many decon-
volution techniques are available [2], they seldom yield agree-
able results without human intervention—they are not com-
pletely automatic. In this context, an oft encountered prob-
lem is the selection of the appropriate regularization parame-
ter λ. Some well-known techniques that address this issue are
the generalized cross validation (GCV) [3] and L-curve based
methods. But these are mostly empirical and do not directly
minimize the mean-squared-error (MSE) of the signal esti-
mate which is the most frequently used measure to quantify
algorithm performance. However, since the MSE depends on
the noise-free signal it cannot be used for real data. A practi-
cal approach, therefore, is to replace the MSE by an unbiased
estimate (commonly termed as the unbiased risk estimate-
URE) that is computed entirely from the noisy data and the
deconvolved signal estimate. Even though this concept is
well-known in the statistics literature and has been used in de-
noising applications, it has not received considerable attention
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for deconvolution problems. Specifically, UREs are available
for the individual cases of additive Gaussian noise (Stein’s un-
biased risk estimate—SURE [4]) and signal-dependent Pois-
son noise [5], respectively. However, measurement noise due
to a CCD detector is never entirely Poisson nor additive Gaus-
sian: a realistic model is to consider a mixture of both [6].
Our first contribution in this paper is a newURE that takes

into account Poissonian photon-counting noise and Gaussian
read-out noise. To the best of our knowledge, this has neither
been documented before, nor applied for deconvolution of 3D
fluorescence microscopy images. In this work, we therefore
propose to select λ by minimizing this URE. The computation
of the proposedURE requires the knowledge of the gain of the
Poisson component and the mean and the variance of Gaus-
sian read-out noise. These quantities depend on the calibra-
tion of the microscope and are either unspecified or difficult
to measure in practice. We therefore also propose a simple
technique to estimate these parameters from the given data
which is our second contribution. Thus, the new URE com-
bined with estimated CCD parameters provide a completely
data-driven mechanism of optimizing λ for regularized de-
convolution.
In what follows, we briefly describe the image forma-

tion model and give the formula for the new URE that cor-
responds to this model. We then show how to compute this
for Tikhonov deconvolution and validate it experimentally by
presenting numerical results on simulated data. Following
that we apply our method to real 3D microscopy data.

2. IMAGE FORMATIONMODEL
The image formation of a wide-field microscope is classically
described by the following 3D convolution model [1]:

Y (x, y, z) = (h ∗ χ)(x, y, z), (1)

where χ(x, y, z) is the 3D object of interest (we have ne-
glected the effect of the background), Y (x, y, z) is the in-
tensity map of the blurred object and h(x, y, z) (under the
paraxial approximation) is the shift-invariant blur function of
the microscope [1]. Typically, the blurred image Y is digi-
tized by a CCD detector array which, in the process, intro-
duces measurement noise. There are many sources of noise
(such as photon shot noise, background noise, dark current,
read-out noise and other deterministic noises) that arise in
CCD detectors [1, 6]. However, for numerical tractability,
we restrict ourselves to the following principal components:
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the Poisson photon-counting noise and the Gaussian read-out
noise, which adequately describe the CCD characteristics [7].
Moreover, we apply a suitable discretization of the continu-
ous convolution in (1) which leads to the following matrix
formulation of the problem:

y = αP{Hx} + b, (2)

whereα is the gain factor and the operatorP{·} represents the
effect of Poisson noise; the mean and variance of the Gaus-
sian read-out noise b are denoted by m and σ2, respectively
and the matrix H, which approximates the continuously de-
fined h, is treated as block-circulant. Additionally, we assume
independence of the individual components of y and that of
the photon-counting process and the read-out noise.

3. PROBLEM STATEMENT
Given y, we are interested in obtaining an estimate x̃ of the
noise-free signal x. This is performed by the application of a
suitably regularized deconvolution algorithm [2] which may
be represented by the mapping fλ : R

N → R
N that operates

on y to yield x̃, that is, x̃ = fλ(y), where λ is the regulariza-
tion parameter. As discussed earlier, in this work, we focus
on obtaining the “best” signal estimate in the MSE sense, that
is, choose λ so that fλ(y) minimizes the MSE given by

MSE(fλ(y)) =
1

N
‖x− fλ(y)‖2. (3)

To get around the dependency of the MSE on the noise-free
signal x, we develop a new practicable risk measure that un-
biasedly estimatesMSE(fλ(y)) for the data model described
by (2).

3.1. Unbiased Risk Estimate—URE
In what follows, we will assume that fλ is a bounded and
continuous operator (continuous in the input data) and that its
divergence w.r.t y given by divy{fλ(y)} =

∑N
n=1

∂fλ n(y)
∂yn

,
where yn and fλ n(y) are the nth component of the vectors
y and fλ(y), respectively, is well-defined in the weak sense.
Then, for y in (2), we define the risk estimate as the random
variable

η(fλ(y)) =
1

N
‖x‖2 +

1

N
‖fλ(y)‖2 +

2σ2

Nα
divy{ḡλ(y)}

−
2

Nα
(y − m1)Tḡλ(y), (4)

where 1 is a N × 1 column vector of 1’s, ḡλ n(y) = f̄λ n(y−
α en), fλ(y) = HT f̄λ(y) and en is a N × 1 vector whose
components are all zero except for the nth one which is unity.
The following theorem ensures that η(fλ(y)) is indeed unbi-
ased.

Theorem 1 The random variable η(fλ(y)) is an unbiased es-
timate ofMSE(fλ(y)), that is,

Ey{η(fλ(y))} = Ey{MSE(fλ(y)}, (5)

where Ey{·} is the expectation operator w.r.t y. �

The proof of this result will appear elsewhere. The unbi-
asedness indicates the equality of η and MSE in the event
N → ∞, where N is the number of pixels. For practical
purposes, therefore, η can be used as a reliable substitute for
MSE for very large N (especially image stacks). Moreover,
we note that, except for the first term ‖x‖2 in η (which is a
non-relevant constant for our purpose), all the other terms are
purely derived fromy and therefore computable. In this work,
we propose to minimize η(fλ(y)) for finding the optimal λ.

4. DECONVOLUTION ALGORITHM
The URE η has a closed form expression that is in principle
computable for certain classes of estimators. In the sequel,
we restrict ourselves to the linear setting which is adequate
for our purpose and completely tractable mathematically. We
consider the Tikhonov-regularized algorithm [2] which yields
an explicit expression for fλ. The signal estimate is obtained
by minimizing the Tikhonov criterion JTik:

fλ(y) = arg min
u

JTik{u}, (6)

JTik{u} = ‖y − Hu‖2 + λ‖Lu‖2, (7)

where L is the matrix (typically block-circulant) that repre-
sents a suitable regularization operator (laplacian or gradient)
and λ is a positive scalar that controls the degree of regular-
ization applied to the solution. The solution of (6) takes the
classical form

fλ(y) = (HTH + λLTL)−1

︸ ︷︷ ︸
Aλ

HT y. (8)

WhenH and L are block-circulant, so isAλ. Then the above
matrix solution is efficiently implemented via FFTs. More-
over, commutativity ofAλ andHT (circulantmatrices) yields
f̄λ(y) = Aλy. Thus the URE (without the constant ‖x‖2) can
be deduced as

η
Tik

(fλ(y)) =
1

N
‖fλ(y)‖2 +

2

Nα

⎛
⎝ (σ2 − m α)Trace{Aλ}

−(y − m1)TAλy
+α Trace{Dy Aλ}

⎞
⎠ , (9)

whereDy = diag{y}. The circulant nature ofAλ facilitates
the computation ofTrace{Aλ} andTrace{Dy Aλ}. The for-
mer is easily computed in the Fourier domain: it is the sum of
the correspondingDFT coefficients, while the latter simplifies
to Trace{Dy Aλ} = 1

N
Trace{Aλ}1Ty.

5. ESTIMATION OF CCD PARAMETERS
The use of η

Tik
requires the knowledge of the CCD depen-

dent parameters (α, m, σ2). Whilem and σ2 (of the read-out
noise) may be measured by running separate calibration ex-
periments [6], α is not totally synonymous with the gain that
is typically provided in microscopes and must therefore be
estimated from the given data. For this purpose, we develop
a simple procedure that is essentially based on the following
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Fig. 1. Plot of (μ̂y, σ̂2
y) and corresponding fit for a noisy re-

alization (α, m, σ2) = (3, 30, 10) of the image shown in the
inset. Estimated parameters are (2.91, 29.65, 9.99).

identities:

μy[k]
def
= Ey{yk} = α(Hx)k + m, (10)

σ2
y[k]

def
= Vary{yk} = α2(Hx)k + σ2, (11)

where (Hx)k is the kth component ofHx. This leads to the
relationship σ2

y[k] = α μy[k] + (σ2 − m α). Then the idea
is to estimate μy[k] and σ2

y[k], k = 1, 2, . . . , K and perform
a linear regression analysis on (μy[k], σ2

y[k])K
k=1: the slope

yields the gain α and the intercept yields the constant κ =
(σ2 − m α).
To estimate (μy[k], σ2

y[k])K
k=1, we first segment y into K

non-overlapping regions wherein the underlying blurred sig-
nalHx is approximately constant in each region. This is ac-
complished by running a very few number of iterations (typi-
cally < 4) of heavily regularized 2D total variation denoising
(TVD) on each slice of y—the advantage of using TVD is
that it not only reduces the noise in y but automatically yields
a piecewise constant approximation y

PC
ofHx. We then de-

fine level values εk = min{y
PC

}+(k−1)δ and corresponding
segmentsΩk =

{
1 ≤ i ≤ N : εk − δ

2 ≤ y
PCi < εk + δ

2

}
, k =

1, 2, . . . , K and δ is a predefined width of each level. This ba-
sically ensures a non-redundant partitioning of the image y:
Ωk

⋂
Ωl = ∅, k �= l and

⋃K

k=1 Ωk = IN , where IN =
{1, 2, . . . , N}.
Estimates of μy[k] and σ2

y[k] are computed for each seg-
ment as the corresponding sample mean and sample variance,
respectively: μ̂y[k] = 1

Nk

∑
i∈Ωk

yi, σ̂2
y[k] = 1

Nk−1

∑
i∈Ωk

(yi−μ̂y[k])2, whereNk is the cardinality of the set Ωk. Since
most of the noise is sufficiently reduced in y

PC
, assuming that

min{Hx} = 0 (which is mostly the case with biological im-
ages), m is simply estimated as min{y

PC
}. Thus, knowing

α, κ andm, we easily obtain a formula for estimating σ2.

6. EXPERIMENTS
First, we numerically validate the proposed URE (9) and the
estimation scheme described in Section 5. For this, we per-
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Fig. 2. Plot of the MSE and corresponding estimate (both
without the ‖x‖2 term) as functions of λ. The minimum of
both quantities are indicated by corresponding markers.

formed the following experiment: we used the 2D uniform
blur kernel of size 9 × 9 and generated a noisy realization
of the image shown in the inset of Figure 1 according to (2)
for the following parameter setting: (α, m, σ2) = (3, 30, 10),
BSNR ≈ 6.77 dB. From the noisy image, we estimated the
CCD parameters using the method described in Section 5 with
δ = 0.2. Figure 1 shows the corresponding regression plot.
The estimated parameter values are α̂ = 2.91, m̂ = 29.65,
and σ̂2 = 9.99: it is clearly seen that the fit (black line) al-
most overlaps with the true relationship (gray line) between
μy and σ2

y.
We then applied the deconvolution algorithm (8) using a

Laplacian operator for L. The URE η
Tik
was computed using

the estimated CCD parameter values and plotted in Figure 2
in comparison with the MSE (equation (3) without the ‖x‖2

term). It is clearly seen that the URE correctly predicts the
shape of MSE curve for the entire range of λ. The slight off-
set (≈ 20) is due to the multiplicative nature of the gain α:
even a slight difference from the true value drastically shifts
the URE vertically. But this does not move the optimal value
of λ, as seen in Figure 2 where the URE closely determines
the minimum of the MSE. For comparison, we also tested the
modified GCV of [3] for Tikhonov regularization and found
that it always yielded a λ that was at least an order of mag-
nitude away from the optimal one. The lesser performance
of GCV may be due to the fact that this measure is linked
to the MSE in the measurement domain which is suitable for
denoising, but less appropriate for deconvolution.
We now present results for automatic Tikhonov deconvo-

lution of real 3D wide-field fluorescence micrographs. The
data was acquired on a Leica DM 5500B system equipped
with a cooled CCD camera, at the EPFL BioImaging and Op-
tics Platform. Figure 4 (top) shows the maximum-intensity
projection (MIP) of the original 3D image stack of a C. Ele-
gans embryo (464 × 320 × 270 voxels). The sample was la-
beled with two fluorophores: Alexa488 (microtubules, green
channel) and Alexa568 (vesicles, red channel). The blur-
ring matrixH for the deconvolution algorithm was generated
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Fig. 3. Plot of (μ̂y, σ̂2
y) and corresponding fit (α̂, m̂, σ̂2) =

(2.01, 84.72, 555.07), for the green channel of the noisy stack
shown in Figure 4 (top).

mathematically based on a standard diffraction-limited PSF
model [1] using the manufacturer-provided imaging parame-
ters (magnification: 63×; numerical aperture: 1.4; immersion
oil refractive index: 1.518).
Figure 3 documents the linear regression on (μy, σ2

y) es-
timated for data in the green channel. For this data set, MAT-
LAB (FFT-based) implementation of the Tikhonov deconvo-
lution algorithm required approximately 3.6 GB of memory
and took about 30 seconds to produce a deconvolved signal
estimate for a single λ on a 2.66 GHz (dual core) Intel-Mac
with 6 GB RAM. The two channels were processed separately
using the method described above for λ that minimized η

Tik
.

The MIP of the deconvolved data set is shown in Figure 4
(bottom). It is seen that the typical wide-field haze is greatly
reduced. In particular, the red light coming from the vesicles
has been reassigned to a more concentrated and brighter vol-
ume; this is in accordance with the fact that vesicles are rela-
tively small biological structures. Also, the filament structure
of the microtubules is visible with significantly better con-
trast.

7. CONCLUSION
In this work, we considered the problem of data-driven selec-
tion of the optimal regularization parameter λ (in the mini-
mum MSE sense) for regularized deconvolution of 3D fluo-
rescence microscopy. For this, we developed a new unbiased
risk estimate (URE) that takes into account Poisson photon-
counting noise and Gaussian read-out noise and proposed to
choose λ by minimizing this measure. We also devised a
scheme for estimating the CCD parameters (the detector gain,
mean and variance of the read-out noise) necessary for com-
puting the proposed URE from the given data. We validated
our method using phantom data and presented deconvolution
results for real 3D wide-field microscopy images.
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